Local Matrix
$$
\begin{bmatrix}
P_1 \D \\ P_2 \D \\ P_3 \D \\ P_4 \D
\end{bmatrix} = k_1
\begin{bmatrix}
1 & 0 & -1 & 0 \D \\
0 & 0 & 0 & 0 \D \\
-1 & 0 & 1 & 0 \D \\
0 & 0 & 0 & 0 \D \\
\end{bmatrix}
\begin{bmatrix}
\rho_1 \D \\ \rho_2 \D \\ \rho_3 \D \\ \rho_4 \D
\end{bmatrix}
$$
$$
\begin{bmatrix}
P_1 \D \\ P_2 \D \\ P_3 \D \\ P_4 \D
\end{bmatrix} = k_2
\begin{bmatrix}
0 & 0 & 0 & 0 \D \\
0 & 1 & 0 & -1 \D \\
0 & 0 & 0 & 0 \D \\
0 & -1 & 0 & 1 \D \\
\end{bmatrix}
\begin{bmatrix}
\rho_1 \D \\ \rho_2 \D \\ \rho_3 \D \\ \rho_4 \D
\end{bmatrix}
$$
$$
\begin{bmatrix}
P_1 \D \\ P_2 \D \\ P_3 \D \\ P_4 \D
\end{bmatrix} = k_3
\begin{bmatrix}
\frac{3}{4} & -\frac{\sqrt{3}}{4} & -\frac{3}{4} & \frac{\sqrt{3}}{4} \D \\
-\frac{\sqrt{3}}{4} & \frac{1}{4} & \frac{\sqrt{3}}{4} & -\frac{1}{4} \D \\
-\frac{3}{4} & \frac{\sqrt{3}}{4} & \frac{3}{4} & -\frac{\sqrt{3}}{4} \D \\
\frac{\sqrt{3}}{4} & -\frac{1}{4} & -\frac{\sqrt{3}}{4} & \frac{1}{4} \D \\
\end{bmatrix}
\begin{bmatrix}
\rho_1 \D \\ \rho_2 \D \\ \rho_3 \D \\ \rho_4 \D
\end{bmatrix}
$$
Mapping
$$
\scriptsize
\begin{array}{c|c}
\textbf{Local} & \textbf{Global} \\ \hline
1 & 1 \\
2 & 2 \\
3 & 3 \\
4 & 4
\end{array}
$$
$$
\scriptsize
\begin{array}{cc}
\textbf{Bar Angle} & 0^{\circ} \\
\end{array}
$$
$$
\scriptsize
\begin{array}{c|c}
\textbf{Local} & \textbf{Global} \\ \hline
1 & 1 \\
2 & 2 \\
3 & 5 \\
4 & 6
\end{array}
$$
$$
\scriptsize
\begin{array}{cc}
\textbf{Bar Angle} & 90^{\circ} \\
\end{array}
$$
$$
\scriptsize
\begin{array}{c|c}
\textbf{Local} & \textbf{Global} \\ \hline
1 & 3 \\
2 & 4 \\
3 & 5 \\
4 & 6
\end{array}
$$
$$
\scriptsize
\begin{array}{cc}
\textbf{Bar Angle} & 150^{\circ} \\
\end{array}
$$